Ldu Factorization Results for Bi - Infinite Andsemi - Infinite Scalar and Block Toeplitz

نویسندگان

  • MATRICESC. van der Mee
  • G. Rodriguez
  • S. Seatzu
چکیده

In this article various existence results for the LDU-factorization of semi-innnite and bi-innnite scalar and block Toeplitz matrices and numerical methods for computing them are reviewed. Moreover, their application to the orthonor-malization of splines is indicated. Both banded and non-banded Toeplitz matrices are considered. Extensive use is made of matrix polynomial theory. Results on the approximation by the LDU-factorizations of nite sections are discussed. The generalization of the results to the LDU-factorization of multi-index Toeplitz matrices is outlined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ldu Factorization Results for Bi-infinite and Semi-infinite Scalar and Block Toeplitz Matrices

ABSTllACT-In this article various existence results for the LDU-factorization of semi-infinite and bi-infinite scalar and block Toeplitz matrices and numerical methods for computing them are reviewed. Moreover, their application to the orthonormal-ization of splines is indicated. Both banded and non-banded Toeplitz matrices are considered. Extensive use is made of matrix polynomial theory. Resu...

متن کامل

Spectral factorization of bi-infinite multi-index block Toeplitz matrices

In this paper we formulate a theory of LU and Cholesky factorization of bi-infinite block Toeplitz matrices A = (Ai−j )i,j∈Zd indexed by i, j ∈ Zd and develop two numerical methods to compute such factorizations. © 2002 Elsevier Science Inc. All rights reserved.

متن کامل

LU -factorization of Block Toeplitz Matrices

We give a review of the theory of factorization of block Toeplitz matrices of the type T = (Ti−j)i,j∈Zd , where Ti−j are complex k × k matrices, in the form T = LDU, with L and L−1 lower block triangular, U and U−1 upper block triangular Toeplitz matrices, and D a diagonal matrix function. In particular, it is discussed how decay properties of Ti a ect decay properties of L, L−1, U , and U−1. W...

متن کامل

A General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming

For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints‎, ‎we define a new gap function that generalizes the definitions of this concept in other articles‎. ‎Then‎, ‎we characterize the efficient‎, ‎weakly efficient‎, ‎and properly efficient solutions of the problem utilizing this new gap function‎. ‎Our results are based on $(Phi,rho)-$invexity‎,...

متن کامل

The multicomponent 2D Toda hierarchy: Discrete flows and string equations

The multicomponent 2D Toda hierarchy is analyzed through a factorization problem associated to an infinitedimensional group. A new set of discrete flows is considered and the corresponding Lax and Zakharov–Shabat equations are characterized. Reductions of block Toeplitz and Hankel bi-infinite matrix types are proposed and studied. Orlov–Schulman operators, string equations and additional symmet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996